.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/tools/plot_reclustering_function.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_tools_plot_reclustering_function.py: reclustering on specific leiden clusters ========================================= This example demonstrates who to perform a reclustering on a selected subset of leiden clusters. You will want to do this for example during the process of celltype annotation, when the clusters do not have a sufficient resolution to seperate all clusters and mixed cell populations still exist. .. GENERATED FROM PYTHON SOURCE LINES 11-71 .. image-sg:: /auto_examples/tools/images/sphx_glr_plot_reclustering_function_001.png :alt: leiden, CD3G, CD8A, CD4, IL7R, NKG7, GNLY :srcset: /auto_examples/tools/images/sphx_glr_plot_reclustering_function_001.png :class: sphx-glr-single-img .. code-block:: default import besca as bc import scanpy as sc import pytest # pytest.skip('Test is only for here as example and should not be executed') # load and preprocess data (here we will start from a preprocessed dataset) adata = bc.datasets.pbmc3k_processed() # extract subset using the recluster function whcih is part of the reclustering (rc) toolkit adata_subset = bc.tl.rc.recluster( adata, celltype=("2", "3", "4", "5", "6", "8", "9", "10", "11", "12"), celltype_label="leiden", resolution=1.2, ) # visualize the new clusters sc.pl.umap( adata_subset, color=["leiden", "CD3G", "CD8A", "CD4", "IL7R", "NKG7", "GNLY"] ) # append new celltype labels to the subclusters. # This is an approximative hand annotation that should be dealt into more widths. labels = [ "NK cell", # 0 "CD4 T-cell", # 1 "CD8 T-cell", # 2 "CD4 T-cell", # 3 "CD8 T-cell", # 4 "CD8 T-cell", # 5 "CD4 T-cell", # 6 "CD4 T-cell", # 7 "CD4 T-cell", # 8 "CD4 T-cell", # 9 "CD4 T-cell", # 10 "CD4 T-cell", # 11 "CD4 T-cell", # 12 "CD4 T-cell", # 13 "CD4 T-cell", # 14 "CD4 T-cell", # 15 "CD4 T-cell", # 16 "CD4 T-cell", # 17 "CD4 T-cell", # 18 "CD4 T-cell", # 19 ] # 10 new_labels = [ labels[i] for i in range(len(adata_subset.obs.get("leiden").value_counts().index.tolist())) ] # merge the labels back into the original adata object # note this will overwrite what ever was saved in adata.obs.celltype; # Here is was not assigned yet. bc.tl.rc.annotate_new_cellnames( adata, adata_subset, names=new_labels, new_label="celltype" ) .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 3.241 seconds) .. _sphx_glr_download_auto_examples_tools_plot_reclustering_function.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_reclustering_function.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_reclustering_function.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_