plot_confusion_matrix¶
- besca.tl.plot_confusion_matrix(y_true, y_pred, classes, celltype, name_prediction='auto_annot', normalize=False, title=None, numbers=False, cmap=<matplotlib.colors.LinearSegmentedColormap object>, adata_predicted=None, asymmetric_matrix=True)[source]¶
plots confusion matrices
returns a matplotlib confusion matrix
- Parameters:
y_true (pandas.core.series.Series) – ordered series of all true labels
y_pred (pandas.core.series.Series) – ordered series of all predicted celltypes
classes (numpy.ndarray) – union of true and predictable celltypes
celltype (str) – celltype column on which the prediction was performed
name_prediction ("auto_annot"| default = "auto_annot") – observation name containing the prediction to compare with.
normalize (bool | default = False) – whether to return absolute values or to value all celltypes equally
title (str | default = None) – title to be given to confusion matrix figure in file.
numbers (`bool`| default = False) – should the numbers be displayed in the plot. Note: is illegible in larger plots
cmap (matplotlib.cm | default = plt.cm.Blues) – colour to be used for plotting
asymmetric_matrix (bool | default = True) – if False returns square confusion matrix, if True it only shows possible combinations
- Returns:
plot of confusion matrix
- Return type:
matplotlib.pyplot.plot