top_counts_genes¶
- besca.pp.top_counts_genes(adata, top_n=10)[source]¶
Give out the genes that contribute the largest fraction to the total UMI counts.
- Calculates the genes which contribute the largest fraction of UMI counts to the total
UMI counts (i.e. the most abundant transcripts).
- Parameters:
adata (
AnnData
) – The annotated data matrix.top_n (int | default = 10) – Integer defining the number of entries to return. If None then the entire table is returned.
- Returns:
pandas DataFrame containing the top_n genes
- Return type:
DataFrame
Example
>>> import besca as bc >>> adata = bc.datasets.simulated_pbmc3k_raw() >>> genes = bc.pp.top_counts_genes(adata)