Note
Click here to download the full example code
filtering functionsΒΆ
This example shows you how to generate plots to visualize the chosen filter threshold. This way you can easily check (visually) if your chosen threshold is a good one.
adding percent mitochondrial genes to dataframe for species human
import besca as bc
import matplotlib.pyplot as plt
import pytest
# pytest.skip('Test is only for here as example and should not be executed')
adata = bc.datasets.pbmc3k_raw()
# define thresholds
min_genes = 600
min_cells = 2
min_UMI = 600
max_UMI = 6500
max_mito = 0.05
max_genes = 1900
# Visualize filtering thresholds
fig, ((ax1, ax2, ax3), (ax4, ax5, ax6)) = plt.subplots(ncols=3, nrows=2)
fig.set_figwidth(15)
fig.set_figheight(8)
fig.tight_layout(pad=4.5)
bc.pl.kp_genes(adata, min_genes=min_genes, ax=ax1)
bc.pl.kp_cells(adata, min_cells=min_cells, ax=ax2)
bc.pl.kp_counts(adata, min_counts=min_UMI, ax=ax3)
bc.pl.max_counts(adata, max_counts=max_UMI, ax=ax4)
bc.pl.max_mito(
adata, max_mito=max_mito, annotation_type="SYMBOL", species="human", ax=ax5
)
bc.pl.max_genes(adata, max_genes=max_genes)
Total running time of the script: ( 0 minutes 0.588 seconds)