kp_counts¶
- besca.pl.kp_counts(adata, min_counts=200, ax=None, figsize=None)[source]¶
visualize the minimum UMI counts per cell threshold.
this function generates a knee-plot visualizing a given min_counts cutoff when given an adata object
- Parameters:
adata (
AnnData
) – The annotated data matrix.min_counts (int | default = 200) – visualize the chosen minimum UMI counts threshold
ax (axes | default = None) – pass the axes class to which your figure should be added
figsize ((width, height) or None | default = None) – optional parameter to define the figure size of the plot that is to be generated
- Returns:
figure is displayed
- Return type:
None
Example
Generate a “knee-plot” for a minimum of 600 UMI counts per cell for an example dataset. >>> import besca as bc >>> import matplotlib.pyplot as plt >>> adata = bc.datasets.simulated_pbmc3k_raw() >>> min_counts = 600 >>> fig, ax1 = plt.subplots(1) >>> bc.pl.kp_counts(adata, min_counts = min_counts, ax = ax1)