kp_genes¶
- besca.pl.kp_genes(adata, threshold=0, min_genes=100, ax=None, figsize=None)[source]¶
visualize the minimum gene per cell threshold.
Generates a “knee-plot” to visualize the chosen threshold for the minimum number of genes that a cell expresses to validate if this is a good threshold.
- Parameters:
adata (
AnnData
) – The annotated data matrix.threshold (int | default = 0) – integer value that defines the minimum expression threshold for a gene to be defined as expressed. Default value is 0.
min_genes (int | default = 100) – visualize the chosen minimum gene threshold (default is set to 100)
ax (axes | default = None) – pass the axes class to which your figure should be added
figsize ((width, height) or None | default = None) – optional parameter to define the figure size of the plot that is to be generated
- Returns:
Figure is displayed
- Return type:
None
Example
Generate a “knee-plot” for a minimum of 600 expressed genes per cell for an example dataset. >>> import besca as bc >>> import matplotlib.pyplot as plt >>> adata = bc.datasets.simulated_pbmc3k_raw() >>> min_genes = 600 >>> fig, ax1 = plt.subplots(1) >>> bc.pl.kp_genes(adata, min_genes = min_genes, ax = ax1)