silhouette_computation¶
- besca.tl.sig.silhouette_computation(adata: AnnData, cluster: str = 'dblabel', emb: str = 'X_umap', verbose: bool = False) silhouette_in [source]¶
Compute the average and per cell (ie samples) silhouette score for the cluster label (should be present in dataobs) (level 3 annotation), computed level 2 annotation and a random cell assignbation. Return a silhouette_in object
- Parameters:
adata (anndata.AnnData) –
cluster ('str') – clustering to evaluate (should be a column in adata.obs)
emb (str) – embedding to use for computing the euclidian distance. should be a key of obsm
- Returns:
silhouette_in dataclass object – Example
——-
>>> import besca as bc
>>> adata = bc.datasets.simulated_pbmc3k_processed()
>>> sils = bc.tl.sig.silhouette_computation (adata)
>>> figure = sils.show_samples.get_figure()