random_forest¶
- besca.tl.auto_annot.random_forest(train, y_train, njobs)[source]¶
- fits a random forest of a thousand esitamtors with balance class weight on training dataset. note: need at least ten nodes - Parameters:
- train (pd.DataFrame) – adata_train.X but scaled and as a dataframe 
- y_train (pd.DataFrame) – one dimensional dataframe containing class label 
 
- Returns:
- trained svm classifier 
- Return type:
- sklearn.ensemble.RandomForestClassifier