random_forest¶
- besca.tl.auto_annot.random_forest(train, y_train, njobs)[source]¶
fits a random forest of a thousand esitamtors with balance class weight on training dataset. note: need at least ten nodes
- Parameters:
train (pd.DataFrame) – adata_train.X but scaled and as a dataframe
y_train (pd.DataFrame) – one dimensional dataframe containing class label
- Returns:
trained svm classifier
- Return type:
sklearn.ensemble.RandomForestClassifier